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Abstract

Nephelometers are calibrated using small particles, often gas molecules. They are
then utilized to measure the scattering of light off different substances which can
be orders of magnitude larger than the Angstrom-range gases. This discrepancy
of calibrating and measuring in different relative size regimes can cause measure-
ments to deviate from theoretical predictions. Compactly introducing scattering
theory’s basics in the first chapter, including Mie’s solution, I determine calibration
coefficients for two integrating nephelometers, Acoem Australasia’s Aurora NE-300
and AirPhoton’s IN101, for full scattering and hemispherical back scattering at
three different wavelengths each, which allows transforming signals into scattering
coefficients. Furthermore, I characterize the nephelometers’ measuring properties
by giving parameters to analytical illumination functions for the IN101 and pro-
viding accurate and reproducible fits for NE300’s illumination function. For two
quasi-monodisperse samples of spherical di-ethylhexyl-sebacat (DEHS) with me-
dian particle diameters of 313.5 nm and 594.7 nm, respectively, I calculate, using
interpolated instead of analytical illumination functions to reduce uncertainty, ex-
pected absolute values of scattering coefficients and compare to the ones measured
by IN101 and NE300. The expected values are the theoretical values adapted to
the respective nephelometer’s illumination and calibration characteristics. IN101 is
saturated for full scattering of the size distribution with a larger median diameter,
where NE300 generally provides more accurate results. For the other size distribu-
tion however, IN101’s values better coincide with the expected ones. IN101 gener-
ally underestimates scattering coefficients, while NE300 consistently overestimates
them. I assess internal nephelometer consistency in two ways. Firstly, by taking the
ratio of measured and expected hemispherical back scattering fractions. Secondly
by assessing the spectral consistency of measured full scattering coefficients. Here
measured ratios of different pairs of illuminating wavelengths are compared to their
expected counterparts. The ratios of hemispherical back scattering fractions are
unsatisfactory, especially for NE300. Only one of six values lies within the desired
10%. However, a real comparison to IN101 requires more valid data points. This
results needs further investigation, as the reason is unknown. Contrarily, all values
describing spectral consistency are within 8.2% of unity, the ones from the size
distribution with a median diameter of 313.5 nm being even more accurate for both
instruments. For future work I suggest that firstly, more data points are assessed
and secondly, the two parameters median size and particle concentration are varied
independently, thus allowing to not only detect patterns and limits of nephelometer
performance, but also their respective origins.
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Chapter 1

Theoretical Background

1.1 Scattering of Light

In the context of this thesis, scattering describes the collision or interaction of
electromagnetic radiation with a particle. The electromagnetic radiation relevant for
the experiment lies within the visible spectrum so we use the terms electromagnetic
radiation and light interchangeably.
In the following we will provide a short introduction to the scattering of light off of
particles. Some excellent and thorough books on the matter are Craig F. Bohren and
Donald R. Huffman’s Absorption and Scattering of Light by Small Particles([2]), J.
W. Hovenier, C. van der Mee and H. Domke’s Transfer of Polarized Light in Plane-
tary Atmospheres ([3]) and James E. Hansen and Larry D. Travis’ Light Scattering
in Planetary Atmospheres ([8]), which have proven to be a great help. Most theory
shown here is their work.

1.1.1 Light as a Plane Wave and Monochromaticity

The nephelometers implemented for the experiments in this report use approxi-
mately monochromatic LEDs (Light emitting diodes) to measure particles’ char-
acteristics, which are far away compared to the particles’ dimensions. Therefore,
one suitable approach to describe the incoming electromagnetic radiation is a plane
wave.
The amplitude of an along A

A linearly polarized plane wave with wave vector k =
2π
λ ek has the shape

A(x, t) = A0e
i(k·x−ω|k|t) (1.1)

where ek points into the direction of propagation and λ is the wavelength. With
the velocity of the wave in the medium cn we also get the angular frequency ω|k| =
|k| · cn.
Unlike the linearly polarized radiation depicted in Figure 1.1, unpolarized electro-
magnetic radiation does not posses a regular shape. Instead, it can be thought of
as a superposition of enough polarized radiation for a polarization measurement
yielding a completely random result. Note, however, that unpolarized radiation can
still be monochromatic.
Regarding monochromaticity, we remark that no continuous source of electromag-
netic radiation, not a LED or even a laser, is completely monochromatic. For
our purposes, the sources’ bandwidths (the widths of the wavelength or frequency
spectra of the emitted radiation) are small and symmetric enough for me to approx-
imate them as consisting of only a single wavelength, for which producers report
the wavelength in the center of the distribution.

1



Chapter 1. Theoretical Background 2

Figure 1.1: A linearly polarized plane wave [1]

1.1.2 A Single Particle Scattering Quasi-Monochromatic Ra-
diation

We begin by considering a plane wave propagating along the positive z-axis, which
is incident on a particle residing at the origin. For large distances from the origin
(|x| ≫ d, λ, the so called far field approximation), the solution to the inhomogeneous
Maxwell Equations is locally a plane wave propagating in direction of the position
of interest, where the measurement is conducted[9].

Figure 1.2: A plane wave incident on a particle. Scattering as a spherical wave, at far
enough distances it can be approximated as a plane wave again.

In the following we proceed similarly to Hovenier et al.([3]). The plane spanned by
the wave vectors of the incident wave (k0) and the scattered wave (k) is called the
scattering plane. For both waves we choose to write their electric field in a basis of



3 1.1. Scattering of Light

two unit vectors r0,l0 and r, l respectively. We define r0, r to be orthogonal to the
scattering plane and l0, l to be parallel to the scattering plane, such that r0, l0,k0

and r, l,k each form a right-handed orthogonal basis of R3.

Figure 1.3: How I (and other authors) choose to describe the scattering of an incoming
plane wave with wave vector k0 at the origin, being measured as a plane wave with wave
vector k afterwards (compare e.g. [2],[3]) The light blue plane spanned by k0,k is the
scattering plane. We describe the situation in spherical coordinates, using the polar angle
θ and azimuthal angle φ.

The respective electric fields can then be rewritten as [3](
E0

l

E0
r

)
= e−ikz+iωt

(
a0l exp(−iε01)
a0r exp(−iε02)

)
(1.2)

and (
El

Er

)
=

e−ikR+ikz

ikR
S(θ, φ)

(
E0

l

E0
r

)
(1.3)

which in turn defines a scattering matrix, using Hovenier et al.’s notation ([3])

S(θ, φ) =

(
S2(θ, φ) S3(θ, φ)
S4(θ, φ) S1(θ, φ)

)
(1.4)

Note that the different sign in the plane wave is not physically relevant, as Re(exp(iα)) =
Re(exp(−iα)).
We will now take a short detour from the usual pathway of describing scattering by a
single particle, sparing us from introducing many new concepts which are irrelevant
for the unpolarized case we are considering.
We define the scattering cross section σsca as a single particle as the ratio between

• the time average of the total energy radiated by the particle, per unit time
(dimension: energy / time)
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• the time average energy of the incident plane wave per unit time per unit area
(dimension: energy / (time · area))

which results in σsca being an area. We can motivate this definition by arguing,
that we are not interested in any information regarding the size of the particle, only
in how it scatters an incoming field.
We define a flux Φ as an energy flow in a given direction per unit time per unit
area. Using that the energy density of a plane electromagnetic wave is |E|2[9] and
remembering E0

r ⊥ E0
l and Er ⊥ El, we derive that for these monochromatic plane

waves
Φ0 = c(|E0

r |2 + |E0
l |2) ek0 (1.5)

and
Φ = c(|Er|2 + |El|2) ek (1.6)

Because in the experiment we are dealing with quasi-monochromatic waves, we take
a time average over a time span large compared to the individual oscillation periods
and get, applying ⟨cos2(ωt)⟩ = ⟨sin2(ωt)⟩ = 1/2

⟨Φ0⟩ = c

2
(⟨|E0

r |⟩2 + ⟨|E0
l |⟩2) ek0 (1.7)

and
⟨Φ⟩ = c

2
(⟨|Er|⟩2 + ⟨|El|⟩2) ek (1.8)

The time average total scattered energy per unit time is then given by integrating
the flux over sphere of radiusR, which is the distance of the detector from the source.
Switching from Cartesian to Spherical coordinates gives (dxdydz → r2dr sin θdθdφ,
r ≡ R)

R2

∫ 2π

0

∫ π

0

⟨Φ(θ, φ)⟩ sin(θ)dθdφ (1.9)

and the time average energy of the incident plane wave per unit time per unit area
is given by exactly by the flux ⟨Φ0⟩. Dividing Equation 1.9 by the incoming flux,
we get the scattering cross section of the particle σsca. Note that the hard part
remains, we haven’t solved for S(θ, φ).
There is also a more compact, but somehow more abstract way to arrive at the
above result. We define the phase function F11(θ, φ) by the following relation

⟨Φ(θ, φ)⟩ = 1

k2R2
F11(θ, φ)⟨Φ0⟩ (1.10)

Inserting into Equation 1.9 yields

σsca =
1

k2

∫ 2π

0

∫ π

0

F11(θ, φ) sin(θ) dθdφ (1.11)

Note, that we still have not solved for the relationship between the incoming and
outgoing radiation, described by S(θ, φ) or equivalently F11(θ, φ).
The above procedure is universally valid. However, generally not only total scat-
tering intensities are of interest, but also how incoming and outgoing waves are
polarized. We could therefore extend the above formalism and describe polariza-
tion using Stokes vectors, extending F11(θ, φ) to transformation matrices and use
different clever bases. All this is excellently described in the books mentioned above
([2],[3],[8]) and many more, but exceeds the needs of the following experiments and
therefore scope of this project.
One quantity we will use however is the scattering efficiency Qsca, which can be
defined from the scattering cross section as

Qsca =
σsca

πr2
(1.12)
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, where r is the radius of the particle. Notice that for non-spherical particles it might
not be straightforward to define a radius. In this case the radius is substituted with
a general characteristic dimension of the particle.

1.1.3 Independent Scattering by Many Particles

Consider some collection of, without loss of generality, different particles. Making
the following assumptions for scattering by an incoming, quasi-monochromatic plane
wave (both [3]):

• Each particle only scatters incoming radiation once

• The entire collection is centered at the origin

We then have[3], analogously to Equation 1.10,

⟨Φ(θ, φ)⟩ = ⟨Φ0⟩
k2R2

∑
g ∈ collection

F g
11(θ, φ) (1.13)

where the sum of all phase functions is noted as

FC
11(θ, φ) :=

∑
g ∈ collection

F g
11(θ, φ) (1.14)

A related but not equal expression is the phase function per unit volume of such
collection, denoted as F cv

11 . If the context is clear, we will also denote F cv
11 as F11

for the sake of readability.
Similarly to the scattering cross section σsca, we define the scattering coefficient bsca
of such a collection as (following [3])

bsca =
1

k2

∫ 2π

0

∫ π

0

F cv
11 (θ, φ) sin θ dθdφ = nσsca (1.15)

where n is the particle density, the number of particles per unit volume, and σsca

is defined as the average scattering cross section. bsca has dimensions of inverse
length.

1.1.4 Hemispherical Scattering

If we only want to know how much a particle reflects, we integrate over the hemi-
sphere with polar angles θ ≥ π/2 instead of the entire unit sphere S2. This is called
hemispherical back scattering. Similarly, we define hemispherical forward scattering
when only interested in polar angles θ ≤ π/2. For both cases, everything is analogous
to full scattering and we have the equivalent definitions.
The hemispherical back scattering fraction β is the ratio between hemispherical back
scattering coefficient bbsca and full scattering coefficient bsca[10]

β =
bbsca
bsca

(1.16)

1.1.5 Simplifications Due to Symmetries and Sample Prop-
erties

In the following we will not be able to derive successive steps, as they get much more
involving and mathematical than the physical description. Even general calculations
on scattering off of spherically symmetric and homogeneous particles are not easy.
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Nowadays mainly attributed to Gustav Mie’s famous 1908 paper (see [7]), Bohren
and Huffman lead through the problem (see [2]) and accompany it by comments
such as ”the reader who has painstakingly followed the derivation of (4.37), and
thereby acquired virtue through suffering”[2]. We will not acquire virtue, instead
citing results relevant to us and refer to the sources for further details.
Consider first a spherically symmetric particle made from an isotropic material,
to which we will refer as sphere from now on. Bohren and Huffman explicitly
solve the problem only for incident radiation linearly polarized along the x-axis,
but due to above conditions, this also provides the solution for any other linear
polarization[2] and thereby for any polarization, because linearly independent linear
polarizations form a basis of all polarization states. Assuming the particles having
no surface charge, it follows from Maxwell’s equations boundary conditions[3], for
example derived from the integral forms of Maxwell’s equations[11], together with
symmetries of a sphere, that El,Er are proportional to E0

l ,E
0
r , respectively[2].

This implies S3 = S4 ≡ 0.
Assuming that the expansion in spherical harmonics uniformly converges, Bohren
and Huffman show that for k · r large enough[2],

El ∼ E0 eikr

−ikr
cosφS2(cos θ) (1.17)

Er ∼ −E0 eikr

−ikr
sinφS1(cos θ) (1.18)

Especially, S1, S2 are independent of the azimuthal angle φ.
In summary, the scattering matrix at large enough distances for spheres with no
surface charge is of the simpler shape

S(θ) =

(
S2(θ) 0
0 S1(θ)

)
(1.19)

leading the phase function to take on the form[8]

F11(θ) =
1

2
(S2S

∗
2 + S1S

∗
1 ) (1.20)

The solutions to S1, S2 for small gold particles in a fluid were published in 1908 by
Gustav Mie (see [7]) and are discussed in subsection 1.1.6.
We now switch back to properties of scattering off of many particles. For a collection
of identical particles, either a large enough collection of randomly oriented or any
collection of spheres, scattering independently, it must hold

bsca = n · σsca (1.21)

For unpolarized incident light, the total phase function is then also independent of
the azimuthal angle φ, which is relevant because our nephelometers only measure
the scattering along a single azimuthal angle and then multiply by 2π.

1.1.6 Mie’s Solution and Scattering in Different Regimes

Classification into different scattering regimes of scattering by a particle is done by
introducing a measure for the relative size of the particle. Comparing the radius r of
a particle to the wavelength λ of incoming radiation, one defines the size parameter
x(r, λ) as

x(r, λ) =
2πr

λ
(1.22)
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Mie derived the general solution, including polarization, for plane waves scattering
off of a spherically symmetric, homogeneous particle by expanding the solutions to
Maxwell’s equations in spherical harmonics[7]. He therefore also derived the solution
to the phase function from Equation 1.20. The solutions however still contain
infinite sums of coefficients that remain to be determined individually, which make
it a task for computers and appropriate approximations as to when to terminate
the sums. Directly citing from Hovenier et al.([3], p.45), these solutions for non-
magnetic materials take the shape

S3(θ) ≡ S4(θ) ≡ 0 (1.23)

S1(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
(a∗nπn(cos θ) + b∗nτn(cos θ)) (1.24)

S2(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
(b∗nπn(cos θ) + a∗nτn(cos θ)) (1.25)

where

πn(cos θ) :=
dPn(cos θ)

d cos θ
(1.26)

τn(cos θ) := cos θ πn(cos θ)− sin2 θ
d πn(cos θ)

d cos θ
(1.27)

, Pn(cos θ) being the Legendre polynomial and a∗n, b
∗
n the so called Mie coefficients,

which depend on the size parameter and the complex refractive index. Notice that
other conventions exist, and for example Bohren and Huffman define πn, τn using
associated Legendre polynomials[2].

Rayleigh Scattering

In the case of r ≪ λ, we can terminate the series after the first term, which is
equal to approximating the particle as a dipole. Therefore the solution is valid for
particles of arbitrary shapes in this regime[3]. We introduce the polarizability α,
which is related to the refractive index of the material. For isotropic α the phase
function is of the form[3]

F11(θ) =
k6|α|2

2

(
1 + cos2(θ)

)
(1.28)

Consider now a collection of identical particles that are not necessarily of spherical
symmetry (ie. α not isotropic), but randomly oriented.

We want to provide yet another way of calculating the phase function in the Rayleigh
regime, as we will use it in the experiment. Following Prahl, who in turn cites
Bohren and Huffman, the scattering efficiency up to fourth order in size parameter
is given by ([2], eq. 5.8)

Qray
sca =

8

3
x4

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣2 (1.29)

, where m is the complex refraction index of the material. For |m|x ≪ 1 it holds
|b1| ≪ |a1|[2]. We denote a phase function that is normalized such that an integra-
tion of the phase function over S2 yields Qsca as p11(θ), in mathematical terms∫

S2

p11(θ, ϕ)dΩ = Qsca (1.30)



Chapter 1. Theoretical Background 8

Using this normalization, we adapt Bohren and Huffman’s equation 5.4 of the scat-
tering matrix to third order in the size parameter x to be[2]

S1 =
1

πx2

3

2
a1(x,m) (1.31)

S2 =
1

πx2

3

2
a1(x,m) cos(θ) (1.32)

, where

a1 = −2ix3

3

m2 − 1

m2 + 2
(1.33)

, which we can then insert in Equation 1.20 yielding p11(θ) (instead of F11(θ)). If
we obtain a phase function through Rayleigh scattering theory (i.e. Equation 1.31,
Equation 1.33), we denote it as F ray

11 . The index ray indicates the method through
which the phase function is obtained, not the size parameter of the particles con-
sidered.

Mie Scattering

It is when r ∼ d, that it makes sense to approximate Mie’s exact solution by solving
for the Mie coefficients. According to Bohren and Huffman, a rule of thumb is
that about x terms in the expansion provide an accurate enough result[2]. If we
obtain a phase function through Mie theory, we denote is as Fmie

11 . We remark,
that Mie theory also provides the correct results for Rayleigh scatterers and as for
F ray
11 , the index mie indicates only the method through which the phase function

is obtained, and is not related to the size parameter of the particles considered.
For clarification we want to emphasize, that if in applications we did not terminate
the calculation after a given number of terms in Equation 1.24, Equation 1.25, Mie
scattering yielded the exact (i.e. theoretical) solutions.

Geometric Scattering

When r ≫ λ, we enter the geometrical scattering regime. We would then need
many terms of the expansion to get a satisfying solution, and maybe a different
ansatz than Mie theory is better suited. We do no enter the geometric regime with
the particles investigated in this thesis.

1.2 Nephelometers

Nephelometers used in this context are integrating nephelometers, measuring the
total or hemispherical back scattering coefficient of a sample, without considering
the Rayleigh scattering at the carrier gas.
Air or other gases, possibly containing further aerosols such as dust, soot or any
kind of vapor, are pumped into the nephelometer at a given flow rate. The device
then illuminates the sample and measures how much of the total incoming intensity
has been deflected. Such devices, adding up intensity from all angles, are called
integrating nephelometers.

Errors and uncertainty propagation Because most of the measured values are
the mean of an array, if not mentioned otherwise, I take the standard error of the
mean (SEM) as its error. For a set {xi}ni=1 it is defined as the standard deviation
(STD) divided by the sample size[13], so

sem({xi}ni=1) =
std({xi}ni=1)√

n
=

√∑n
i=1(xi − x̄)2

(n− 1) · n
(1.34)
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where x̄ is the mean of the sample, defined as[13]

x̄ =

∑n
i=1 xi

n
(1.35)

I propagate errors according to Gaussian error propagation, giving explicit theo-
retical expressions but using Lebigot’s uncertainties package for coding. I do not
assume errors in the individual measurements themselves, nor in any literature val-
ues. For example, I do not consider errors stemming from illuminating wavelength
discrepancies due to finite bandwidth.

1.2.1 Nephelometer Calibration in the Rayleigh Regime and
Relation between Theoretical and Measured Scattering
Coefficients

We introduce the following nomenclature. neph indicates the type of nephelometer
used (here NE300 or IN101, see chapter 2). angwidth, short for angular width,
describes the range of polar angles included. It is of types full scattering sca,
covering the range 0◦ to 180◦, hemispherical forward scattering fsca, only including
polar angles from 0◦ to 90◦, or hemispherical back scattering bsca, integrating over
polar angles from 90◦ to 180◦.
The conversion from theoretical values at standard pressure (101 320Pa) and stan-
dard temperature (273.2K) is done according to[15]

btheoangwidth(T, P ) = btheo, STP
angwidth

273.2

T

P

101320
(1.36)

From the symmetry of a Rayleigh scatterers phase function it follows, that the
theoretical values for hemispherical back scattering coefficients are half those of total
scattering. In the Rayleigh regime, scattering coefficients for different wavelengths
are inversely proportional to the fourth power of the wavelength[8]. This implies

btheoangwidth(λ) = btheo, λref

angwidth ·
(
λref

λ

)4

(1.37)

, where λref is the illuminating wavelength at which the literature values (provided
and motivated in subsection 2.1.2) are given. I assume both, the reference and
nephelometer illuminating wavelength, to be exact.
Finally, calibrating the nephelometers in the Rayleigh regime, we require

bneph, Rayleigh, λ
angwidth = btheo, Rayleigh

angwidth (T, P, λ) (1.38)

= btheo, Rayleigh, STP, λref

angwidth ·273.2
T

P

101320
·
(
λref

λ

)4

(1.39)

For temperature and pressure we use the time average over the measurement pe-
riod ⟨T ⟩, ⟨P ⟩, provided by the respective nephelometer. As errors we propagate
their SEMs sem(T ), sem(P ). Assuming correlation of temperature and pressure
negligible, this yields a SEM of

sem
(
bneph, Rayleigh, λ
angwidth

)
= bneph, Rayleigh, λ

angwidth ·

√(
sem(T )

T

)2

+

(
sem(P )

P

)2

(1.40)

In 1996, Anderson et al. analyzed an integrating nephelometer of model 3563 pro-
duced by TSI Inc. Analyzing aerosols with scattering coefficients between 0.2 and
6 times the one of air at standard pressure and temperature, they found linear re-
gression correlation coefficients of r2 ≥ 0.999 in 22 out of 24 cases and r2 ≥ 0.990
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in the remaining two[16]. This leads us to assume the raw signal from the pho-
tomultiplier tube (PMT) to be linearly dependent on the scattering coefficient in
the Rayleigh regime. For the IN101, having one detector measuring hemispheri-
cal forward and one measuring hemispherical back scattering (see section 2.1.2),
the over a measurement period time averaged raw signal for full scattering is
⟨sIN101

sca ⟩ = ⟨sIN101
bsca + sIN101

fsca ⟩. The mathematical expression capturing the linear
dependence expected is then for both nephelometers

bneph, λangwidth

(
⟨sneph, λangwidth⟩

)
= cneph, λ0, angwidth + cneph, λ1, angwidth · ⟨sneph, λangwidth⟩ (1.41)

where c0 is usually called offset and c1 is called gain or span.
When calibrating the nephelometers we define the values of offset cneph, λ0, angwidth and

gain cnephλ
1, angwidth such that the scattering coefficients deducted using Equation 1.41

match the theoretical values of the Rayleigh scattering gases CO2 and Air at given
temperatures, pressure and wavelength obtained from Equation 1.38, minus the
scattering coefficient of air. We deduct the scattering coefficient of air because the
sample will be suspended in filtered air, adding additional scattering signal we have
to compensate. Thus, we calibrate the nephelometers such that illuminating filtered
air yields a zero scattering coefficient

0 = cneph, λ0, angwidth + cneph, λ1, angwidth · ⟨sneph, λ, airangwidth ⟩ (1.42)

and illuminating pure CO2 yields a scattering coefficient of

bneph, λ,CO2

angwidth −bneph, λ, airangwidth = cneph, λ0, angwidth + cneph, λ1, angwidth · ⟨sneph, λ,CO2

angwidth ⟩ (1.43)

We get a system of two equations for each pair of offset and gain of the shape(
1 ⟨sneph, λ,airangwidth ⟩
1 ⟨sneph, λ,CO2

angwidth ⟩

)
·

(
cneph, λ0, angwidth

cneph, λ1, angwidth

)
=

(
0

bneph, λ,CO2

angwidth −bneph, λ, airangwidth

)
(1.44)

The inverse of a non-singular two by two matrix A =

(
a b
c d

)
is given by its

adjoint divided by its determinant, A−1 = 1
detA

(
d −b
−c a

)
(insert for proof). Thus,

assuming ⟨sneph, λ,airangwidth ⟩ ≠ ⟨sneph, λ,CO2

angwidth ⟩, we conclude(
cneph, λ0, angwidth

cneph, λ1, angwidth

)
=

1

⟨sCO2⟩ − ⟨sair⟩

(
⟨sCO2⟩ −⟨sair⟩
−1 1

)
·
(

0

bCO2 −bair

)
(1.45)

where I omitted the indices angwidth, neph, λ on the RHS for sake of legibility.
Assuming the errors to be uncorrelated, we get standard error of the

sem(c0)
2 =

(
⟨sair⟩

⟨sCO2⟩ − ⟨sair⟩

)2

· sem(bair)2 +

(
− ⟨sair⟩
⟨sCO2⟩ − ⟨sair⟩

)2

· sem(bCO2)2

+

(
−(bCO2 − bair)⟨sCO2⟩
(⟨sCO2⟩ − ⟨sair⟩)2

)2

· sem(sair)2 +

(
(bCO2 −bair)⟨sair⟩
(⟨sCO2⟩ − ⟨sair⟩)2

)2

· sem(sCO2)2

(1.46)

and

sem(c1)
2 =

(
−1

⟨sCO2⟩ − ⟨sair⟩

)2

· sem(bair)2 +

(
1

⟨sCO2⟩ − ⟨sair⟩

)2

· sem(bCO2)2

+

(
bCO2 −bair

(⟨sCO2⟩ − ⟨sair⟩)2

)2

· sem(sair)2 +

(
− bCO2 −bair

(⟨sCO2⟩ − ⟨sair⟩)2

)2

· sem(sCO2)2

(1.47)
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for both nephelometers and all angular widths and illuminating wavelengths.
I want to remark, that many more intricate methods of calibration exist (see e.g.
[16]). A next step in accuracy could be achieved by specifically describing noise, for
example by subtracting dark counts or measuring wall scattering, although these
are also accounted for in our method.

1.2.2 The Illumination Function

In order to constrain ourselves to for the experiment relevant theory, we from now
on assume our source to be unpolarized and the measured particles to be spheres
or very small. Indeed, these assumptions are valid for in our experiment because
LEDs emit unpolarized light, the calibration gases are in the Rayleigh regime (see
subsection 1.1.6) and DEHS-aerosols are spherical (see subsection 2.2.1).
A perfect instrument would measure all polar angles θ and do so with the same
weight. However, due to physical constraints such as finite size, a real instru-
ment can never achieve this. A nephelometer’s unique weight function, the angular
illumination function ineph,λangwidth(θ), quantifies this, and without loss of generality dif-
fers for full and hemispherical back scattering as well as for different illuminating
wavelengths. A perfect instruments illumination function is unity. In spherical
coordinates, and assuming azimuthal invariance, the Jacobi determinant implies
that unity corresponds to sin θ, and the measured scattering coefficients match the
theoretical scattering coefficients. The samples theoretical scattering coefficient is
denoted as bperfangwidth, where perf stands for the instrument being perfect. We use
the following expressions of the different theoretical scattering coefficients

bperfsca =

∫
S2

F11(θ) dΩ = 2π

∫ π

0

F11(θ) sin(θ) dθ (1.48)

and similarly for hemispherical back scattering

bperfbsca =

∫
{S2|z≤0}

F11(θ) dΩ = 2π

∫ π

π/2

F11(θ) sin(θ) dθ (1.49)

A real instrument’s illumination function will therefore (hopefully) be of some shape
reminding of a sine, and always cut off (truncated) at the measurement limits. While
the NE300, measuring full scattering with a single detector, has a single illumina-
tion function even for full scattering, we obtain IN101’s full scattering illumination
function by adding the respective wavelength’s hemispherical forward and back
scattering illumination function, so

ineph,λsca (θ) = ineph,λfsca (θ) + ineph,λbsca (θ) (1.50)

If the only deviation stemmed from the nephelometer not illuminating perfectly,
the scattering coefficients we expected the devices to measure were proportional as

billum,mie
sca ∝ 2π

∫ π

0

Fmie
11 (θ) ineph,λsca (θ) dθ (1.51)

for full scattering and

billum,mie
bsca ∝ 2π

∫ π

π/2

Fmie
11 (θ) ineph,λbsca (θ) dθ (1.52)

for hemispherical back scattering, the proportionality factor depending on the nor-
malization of the illumination function. Here the index mie indicates, that the
phase function is obtained from Mie theory.
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However, remember that offset and gain are calibrated such as to best fit the be-
haviour of a Rayleigh scatterer because we define them by requiring the measured
(i.e. calibrated) and literature scattering coefficients of the calibration gases to be
equal (see Equation 1.38), compensating any systematical errors such as non-perfect
illumination. We need an expression that corrects a measured scattering coefficient
for samples scattering differently from a Rayleigh scatterer and the instrument be-
ing non-perfect, but at the same time considers that during calibration we already
accounted for the instrument’s illumination function in case of Rayleigh scatterers.
For identical particles, we introduce the full scattering coefficients obtained using
Rayleigh theory for a perfect instrument

bperf, raysca = 2π

∫ π

0

F ray
11 (θ) sin(θ) dθ (1.53)

and a nephelometer with non-perfect illumination

billum, ray
sca ∝ 2π

∫ π

0

F ray
11 (θ) ineph,λsca (θ) dθ (1.54)

and equivalent for hemispherical forward and back scattering. We then define a
normalized phase function P11(θ), such that for a single particle size

P11(θ) =
F11(θ)

bperf
(1.55)

We fulfill the above correction requirements by multiplying the scattering coeffi-
cients of a perfect instrument (1.48) and (1.49) by the correction factor∫ π

0
Pmie
11 (θ) ineph, λangwidth(θ) dθ∫ π

0
P ray
11 (θ) ineph, λangwidth(θ) dθ

(1.56)

, obtaining the corrected scattering coefficients

bcorrangwidth = btheoangwidth ·
2π
∫ π

0
Fmie
11 (θ) ineph, λangwidth(θ) dθ

bperf,mie
angwidth

·
bperf, rayangwidth

2π
∫ π

0
F ray
11 (θ) ineph, λangwidth(θ) dθ

(1.57)

where btheoangwidth = bperf,mie
angwidth, because we assume Mie theory to provide exact results.

1.3 Particle Distributions

1.3.1 Normal Distribution

The normal or Gaussian distribution is a very common distribution in natural sci-
ences, as for example the Binomial distribution and the Poisson distribution tend
towards it for larger sample sizes and larger expectation values, respectively[17].
The probability distribution function (PDF) of a normal distribution is given by[17]

f(x) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
(1.58)

1.3.2 Lognormal Distribution

Consider some set of real numbers larger than zero. If taking its item wise logarithm
yields a new set that is normally distributed, the original set followed a so called
lognormal distribution. The PDF of a lognormal distribution is[18]

fX(x) =
1

x σ
√
2 π

exp

(
− (lnx− µ)2

2 σ2

)
(1.59)
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Its median is equal to its geometric mean, given by eµ[18].
If instruments measuring particle size use different bin widths, this results in dif-
ferent number concentrations for the same distributions[19]. As the bins are often
logarithmically spaced, above potential error source can be eliminated by dividing
by the difference in logarithms of bin borders[19], which infinitesimally corresponds
to[19]

∆Ni

log10 Dupper,i − log10 Dlower,i
→ dN

d log10 Dp
(1.60)

where Dp is the midpoint diameter of the bin width.
We can relate this distribution to the diameter distribution by

dN

d log10 Dp
=

dN

dDp

dDp

d log10 Dp
(1.61)

=
dN

dDp

(
d log10 Dp

dDp

)−1

(1.62)

=
dN

dDp

(
1

Dp ln(10)

)−1

(1.63)

=
dN

dDp
Dp ln(10) (1.64)

Combining both results, the corresponding PDF for a lognormal size distribution,
measured in normalized bin widths, is given by

dN

d logDp
=

dN

dDp
Dp ln(10) =

ln(10)

σ
√
2π

exp

(
− (lnDp − µ)2

2 σ2

)
(1.65)

It is this PDF that we fit the particle distributions to in subsection 3.3.2.
Now as to why we present the lognormal distribution. Different analyses have
shown that natural distributions often exhibit a lognormal behavior[20], recent re-
search has for example explored why droplets from water sprays follow lognormal
distributions[21]. Generally, the aerosols created from a single source tend to follow
a lognormal distribution[19].

1.3.3 Scattering Coefficients of Particle Distribution

Consider a set of particles with a diameter distribution n(D), made up solely of
one substance that is either spherically symmetric and nonmagnetic or randomly
oriented and present in large enough numbers. Let the complex refractive index of
the sample be m. The scattering coefficient of this distribution is then

bsca =

∫ Dmax

Dmin

bsca (n(D), x, m) dD (1.66)

=

∫ Dmax

Dmin

n(D)σsca(x,m) dD (1.67)

and similar for hemispherical back scattering. If the particles are described by a
to bin width normalized lognormal PDF n(Dp) with parameters µ, σ and a total
number concentration of N over all sizes, we conclude

bangwidth =

∫ Dp,max

Dp,min

dN

d logDp
· bangwidth(x,m) dDp (1.68)

=

∫ Dp,max

Dp,min

N · ln(10)
σ
√
2π

exp

(
− (lnDp − µ)2

2 σ2

)
· σangwidth(x,m) dDp

(1.69)
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Chapter 2

Methods

2.1 Work with Nephelometers

2.1.1 Nephelometers Used and Their Mode of Operation

Aurora NE-300 Multi Wavelength Integrating Nephelometer

The Aurora NE-300 multi wavelength nephelometer, to which from this point on-
ward we will refer as NE300, is an integrating nephelometer produced by Acoem
Australasia that operates with three LED sources of wavelengths 635 nm, 525 nm
and 450 nm within angles between 7.3◦ and 172.7◦[4]. The used device has serial
number 231689.

Hemispherical back scattering is automatically measured by covering parts of the
light source emitting rays that make less than a 90◦ angle with the detector.

Figure 2.1: The light path of the NE300 nephelometer during hemispherical back scatter-
ing. Directly taken from the manual[4]

The Integrating Nephelometer IN101 by AirPhoton

The AirPhoton 3-wavelength Integrating Nephelometer IN101 is a relatively small
and sturdy instrument. Operating LEDs at 632 nm, 532 nm and 450 nm[22], it
applies a different measurement technique compared to the NE300.

The IN101 has two detectors, one covering hemispherical front scattering of an-
gles between 7◦ and 90◦ and one covering hemispherical back scattering of angles
between 90◦ and 170◦[22]. The used device has serial number IN1064.

Hemispherical back scattering is then measured by only counting using the detec-
tor covering the larger angles, and it is not possible to make any further angular
refinements.

15
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2.1.2 Instrument Calibration

In order to determine offset and span from Equation 1.41 for each instrument and
wavelength, the two Rayleigh scatterers CO2 and air are used. Here air refers to
ambient air filtered by a high efficiency particulate air (HEPA) filter, such that I
can assume the remainder of small particles to be negligible. When measuring the
properties of other aerosols suspended in air, the scattering coefficient of air has
to be subtracted in order to solely measure scattering by the given sample. For
this reason, the offset at a given wavelength is defined to be equal to the scattering
coefficient of air at that wavelength.

Following the argument of Moallemi[23], we use the values provided by Dolgos and
Martins for btheo,STP

sca because they use instruments with similar wavelengths, which
are btheo,STP, air

sca = 14.02Mm−1 and btheo,STP, CO2
sca = 36.47Mm−1[23] at 532 nm.

We calibrate the nephelometers for two reasons. Firstly, to calculate the calibra-
tion coefficients to be able to convert the PMT signal to scattering coefficients and
perform sanity checks in case we obtain unreasonable results. Secondly, the instru-
ments have their own software calculating scattering coefficients, which also needs
to calibrated. It is those measurements, that we primarily rely on and use for our
calculations, as we believe them to be more accurate. I was not able to access
or uncover the exact formulas the nephelometers’ software use, although they are
probably somewhat similar to the ones described in section 1.2. However, in this
project we want to assess the values reported by firmware, so our calibration coeffi-
cients will not be further used and since both nephelometers’ scattering coefficients
measured during calibration agree with literature values, I proceed as described.

Calibration of NE300

The NE300 is capable of adding all counts towards full scattering independently,
and separately also gives the counts in the hemispherical back scattering range.

Calibration of IN101

Due to the IN101 having two detectors for front and back scattering, we add both
counts when calibrating full scattering and only include the counts from the back
detector when calibrating hemispherical back scattering, as described in subsec-
tion 1.2.1.

2.1.3 Illumination Functions of the Nephelometers

For both devices, angular signal data was provided to the Atmospherical Physics
and Optics group by the manufacturer. Due to the different builds, the respective
data has a different structure. The goal of this part of the experiment is to provide
analytical functions describing the instruments illumination function. In retrospec-
tive this proves to be not worth the effort and it’s simpler and similarly accurate to
interpolate the relative signal, as I will discuss in chapter 4. The second method is
also the one applied in section 2.2.

Illumination Function of NE300

The data describing NE300’s signal as a function of angle, where each of the six
sets is divided by its respective maximum signal, can be seen in chapter 3, subsec-
tion 3.2.1. For full scattering, we simply perform a polynomial fit, For hemispherical
back scattering however, we additionally set the fits’ negative values to zero, as well
as the positive values for angles smaller than approximately 1 rad. This is because
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the polynomial fits alone display oscillations around zero in these areas and we do
not want to just fit higher and higher order polynomials.

Illumination Function of IN101

The data provided for the IN101, again each of the six sets divided by their respec-
tive maximum signal, is shown in Figure 2.2.

Figure 2.2: Relative signal vs. angle for the different wavelengths and detector regions
(front scattering and back scattering) of IN101, provided by AirPhoton. Note that the
angle is given as the difference from 0◦ for hemispherical front scattering and 180◦ for
hemispherical back scattering.

Assessing the shapes in Figure 2.2, I decide to construct the final functions out of
a combination of different functions. As not to overfit the data, I adjust initial
guesses for forward and backward scattering but use the same functions.
At small angles, the data reminds us of an even monomial of high order. An ansatz
is then

func1(x, ymin, b, c, d) := ymin + bx+ (c|x|)d (2.1)

where ymin is the global minimum of the dataset, which, for unclear reasons, always
occurs at small angles. The function contains both linear (b · x) and curved terms
(c·|x|)d, allowing it to exhibit both linear and non-linear behavior. The curvature of
the function is controlled by the parameters c and d. Higher values of c and d result
in stronger curvature, while lower values lead to a flatter curve. The parameter ymin

acts as an offset, shifting the entire curve up or down and b, c, and d control the
scaling and shape of the curve. Physically this behaviour can be explained by the
detector simply not being able to measure at these small angles, the measurement
is truncated. Medium angles are exhibiting sine-like behaviour, which is good news
when comparing to Equation 1.48 and Equation 1.49. We propose a sinusoidal curve
with additional control over its behavior.

func2(x, ymin, e, f) := max(sin(ex− f), 3ymin) (2.2)

describes a squeezed or widened sine with a phase shift, as the observed roots of the
data do not occur at zero. Taking the maximum of this curve and ymin allows for a
better combination of the three functions, but is not representing any characteristic
of the values in these mid-range angles.
For a perfect instrument, the illumination function of one detector is a sine in
the respective range and zero else, so zero for angles smaller/larger than π/2 for
front/back scattering. We can observe such a fall, but we observe symmetrical
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deviations around the steep fall I cannot explain. Still, we make an ansatz using
the following auxiliary equations. Let

center :=
π

2
+ g (2.3)

ytanh = (tanh((−x+ center)h) · 0.5(1− ymin)) + 0.5 +
ymin

2
(2.4)

ygauss plus = A exp

(
− (x− center− centeroffset)2

σ

)
(2.5)

ygauss minus = −A exp

(
− (x− center + centeroffset)2

σ

)
(2.6)

, then

func3(x, ymin, g, h,A, σ, centeroffset) := ytanh + ygauss plus + ygauss minus (2.7)

This function combines a negative and shifted hyperbolic tangent with two Gaussian-
like functions to further control the asymmetry. The parameters h and center control
the steepness and center of the S-curve, respectively. Similar to func1, ymin acts
as an offset. A controls the overall scaling of the function. The parameters σ and
centeroffset control the width and position of the Gaussian peaks, respectively. As
depicted in Figure 2.3, the above functions were chosen such that the envelope the
data, which itself is concave over large parts. We can then combine these functions
describing the data partially to the following general ansatz, leaving away the input
and parameters for sake of legibility.

ftot := max [min(func1, func2, func3), ymin] (2.8)

Figure 2.3: The combined ansatz for the illumination function of the IN101 with optimized
parameters

We then solve for the optimal parameters using the minimize function from the
scipy.optimize package.

2.2 DEHS Scattering

In subsection 2.1.2 we described how nephelometers are calibrated using air and
CO2. With high enough angular resolution, for example provided by the NE300,
one could reconstruct the phase function and then precisely calculate the scattering
coefficient. However, nephelometers can not only report counts, but also directly
calculate scattering coefficients. The fact that the calibration gases are Rayleigh
scatterers (for which we can terminate the series expansion in Mie theory after first
order, see subsection 1.1.6), could imply that the scattering coefficients reported
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by the nephelometers are less accurate with larger size parameters of the analyzed
aerosols. In this part of the experiment, we measure the scattering coefficients of dif-
ferent lognormal size distributions of DEHS using nephelometers IN101 and NE300
and compare the measurements to theoretical values of the same distributions ob-
tained through Mie theory, as well as values obtained from our simple calibration
according to Equation 1.41. Our goal is to gain an insight into the accuracy of the
nephelometers’ internal scattering coefficients calculation for aerosols in the Mie
regime.

2.2.1 General Properties of DEHS

DEHS is a colorless, odorless and in water non-soluble substance that is often used
to produce stable aerosols, for example when monitoring clean rooms[5]. Reasons
are a long life time, low filter burden by sub micron particle sizes and, for this
experiment most importantly, the aerosols being spherical[5]. The last fact makes
Mie theory suitable to describe scattering by DEHS.

2.2.2 DEHS’ Refractive Index

As one prerequisite of calculating scattering properties is knowledge of the, without
loss of generality, complex refractive index, we need a model to describe it. From
two different data sheets we take the literature values to be[5][6].

Wavelength (nm) 450 500 550 600 650
Refractive index 1.4585 1.4545 1.4535 1.4520 1.4500

Table 2.1: Literature values for the refractive index of DEHS at different wavelengths,
obtained from [5][6]

Since the refractive index is about inversely proportional to the wavelength[25], we
fit function

n(λ) =
a

λ
+ b (2.9)

to the theoretical values from Table 2.1 using minimize from scipy.optimize.

2.2.3 Experimental Setup

By pumping air through a nebulizer containing liquid DEHS at a flow rate of
1 L ·min−1 (liter per minute), we create an at this point unknown size distribution of
(spherical) DEHS aerosols. To create a known and controlled charge distribution of
the aerosols, which can be highly charged after creation[26], the particles are passed
through a radioactive neutralizer, where the excess aerosol charge is conducted to
the walls of the neutralizer, because the ions from radioactive decays create an
electrically conductive environment[27]. Afterwards an aerodynamic aerosol classi-
fier (AAC) selects a lognormal distribution around some chosen median. This is
later verified by a scanning mobility particle sizer (SMPS). The AAC filters par-
ticles according to their aerodynamic diameter, a property describing how much
an aerosol follows a medium flow[28]. As not to saturate the measurement devices
that follow, we now dilute the size selected aerosols with 10L ·min−1 of filtered
air, regulating the flow via a mass flow controller (MFC). At this point we split
the reduced concentration flow of 11L ·min−1 of DEHS into five parts. To validate
that the size selected aerosols indeed follow a lognormal distribution, 0.3L ·min−1

are channeled into a SMPS, size selecting them in an electrostatic environment.
Another 0.3L ·min−1 are passed through a condensation particle counter (CPC),
determining the number concentration of aerosols with an estimated accuracy of



Chapter 2. Methods 20

10% by condensating vapor upon them and optically analyzing the sample. Si-
multaneously, nephelometers NE300 and IN101 assess 5.0L ·min−1 each, while the
leftover flow remains unused.

Figure 2.4: The setup for measuring the scattering coefficients of different lognormal size
distributions of DEHS

2.2.4 Calculation of Expected Scattering Coefficients

In order to obtain the corrected scattering coefficients of Equation 1.57 for a lognor-
mal distribution of particles, we calculate corrected scattering cross sections which
we then integrate over the particle sizes according to Equation 1.68. To obtain cor-
rected scattering cross sections we use Equation 1.57, but normalise to scattering
cross sections as the scattering coefficient is defined only for the entire collection.
After adding the CPC’s 10% uncertainty, we compare the corrected values to

bmeas
angwidth = ⟨bmeas

angwidth⟩ ± sem(bmeas
angwidth) (2.10)

. As we aim to test NE300 and IN101’s firmware, we do not employ our calcu-
lated calibration coefficients to obtain measured scattering coefficients, using their
reported values instead.
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Results and Discussion

3.1 Instrument Calibration

Adapting the theoretical scattering coefficients to recorded temperature and pres-
sure (see Equation 1.36) and the nephelometers’ wavelengths (see Equation 1.37) we
solve the calibration equation (see Equation 1.45), yielding the calibration factors

cneph, λ0, ang. width, c
neph, λ
1, ang. width in Table 3.1, Table 3.2.

λ (nm) cIN101, λ
0,sca × 10−2 cIN101, λ

1,sca × 105 cIN101, λ
0,bsca × 10−1 cIN101, λ

1,bsca × 105

632 −1.57± 0.026 2.95± 0.048 −7.84± 0.13 1.47± 0.024
532 −2.39± 0.028 5.39± 0.062 −11.9± 0.14 2.69± 0.031
450 −1.72± 0.016 3.00± 0.028 −8.60± 0.081 1.50± 0.014

Table 3.1: Calibration coefficients cIN100, λ
0, ang. width, c

IN100, λ
1, ang. width for IN101

The back scattering offset values of IN101 are in the same order of magnitude as
in the calibration instructions. The gains differ by 8 to 9 orders of magnitude, due
to AirPhoton using a different calibration procedure. Therefore a comparison is
not possible. Because I directly combine forward and back counts, I can’t compare
these values. The uncertainties of IN101 are on average 0.68% for the offset and
1.24% for the gain, analyzing 200 datapoints during 50min of calibration time.

λ (nm) cNE300, λ
0,sca × 10−3 cNE300, λ

1,sca × 104 cNE300, λ
0,bsca × 10−3 cNE300, λ

1,bsca × 104

635 −2.29± 0.11 9.31± 0.64 −1.146± 0.056 4.66± 0.23
525 −8.33± 0.50 37.6± 2.3 −4.17± 0.25 18.8± 1.1
450 −17.5± 1.2 90.0± 6.4 −8.77± 0.62 45.0± 3.2

Table 3.2: Calibration coefficients cNE300, λ
0, ang. width, c

NE300, λ
1, ang. width for NE300

We observe the gain to decrease for larger wavelengths for the NE300. The un-
certainties of NE300 are on average 5.94% for the offset and 6.33% for the gain.
For NE300 we took 220 valid data points during 50min. All obtained calibration
coefficients are checked to fulfill the requirements Equation 1.42 and Equation 1.43.

3.2 Illumination Functions of the Nephelometers

3.2.1 Illumination Function of NE300

In Figure 3.1 we see all illumination functions of the NE300. The fits are performed
as described in section 2.1.3 and converged without difficulties. For full scattering,

21
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Figure 3.1: The relative signal and respective fits for the NE300, both full and hemi-
spherical back scattering ranges are shown for NE300’s wavelengths 635 nm (red), 525 nm
(green) and 450 nm (blue). The axis orientation was chosen to be consistent with the angle
conventions from Figure 1.3.

we observe that the data follows a sine more closely for angles closer to π/2, whereas
symmetric deviations exist farther outwards. Regarding hemispherical back scat-
tering, the signals that would ideally describe a perfect cut are of an approximately
sigmoidal shape around, with longer wavelengths being more symmetric around the
symmetry center (x = π/2, y = 0.5). Separate illumination functions for the different
illuminating wavelengths are plotted in subsection A.1.1.

3.2.2 Illumination Function of IN101

Scattering Type bw blue bw green bw red fw blue fw green fw red
Sum of residuals ×102 2.40 2.91 3.05 2.86 3.06 3.87
Ratio to fw blue 0.84 1.02 1.07 1.00 1.07 1.35

Table 3.3: Minimized sum of least squares residuals and respective ratio to blue (450 nm)
forward scattering. ’bw’ stands for hemispherical back scattering and ’fw’ stands for hemi-
spherical forward scattering.

Due to IN101’s build, where two separate detectors measure photons travelling to
the front hemisphere (0 < θ < π/2) and to the back hemisphere (π/2 < θ < π), we
additionally introduce hemispherical forward scattering. Having defined our fitting
functions upon analyzing IN101’s relative signal of 450 nm hemispherical forward
scattering, we compare the ratios of the other fits in Table 3.3, to analyze whether
our ansatz is suitable for all of IN101’s data or only for 450 nm hemispherical forward
scattering. The ratios are all within 1.35, hemispherical back scattering even having
a better fit. I conclude, that the fitting ansatz is suitable for all wavelengths and
also forward scattering. The optimized of the illumination function parameters for
the different wavelengths and forward and back scattering are shown in Table 3.4.
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Figure 3.2: The relative signal and respective fits for the IN101, both full and hemispherical
back scattering ranges are shown for IN101’s wavelengths 632 nm (red), 532 nm (green) and
450 nm (blue). As in Figure 3.1, I choose to mirror the x-axis, such that the measurements
of the back scattering detector (◁, left part of the plot) and front scattering detector (▷,
right part of the plot) match the coordinate conventions from Figure 1.3.

bw blue bw green bw red fw blue fw green fw red
ymin × 102 2.207 3.118 1.426 1.507 2.235 1.023
b× 102 8.672 9.150 8.840 2.357 6.290 2.572
c× 100 5.186 5.160 5.145 7.133 7.143 7.252
d× 10−1 2.763 2.480 2.468 2.157 2.124 2.235
e× 100 1.090 1.189 1.151 1.099 1.139 1.147
f × 102 3.230 4.485 4.140 1.490 1.767 1.941
g × 102 1.226 1.232 −2.348 1.072 1.221 −4.475
h× 10−1 4.087 3.961 3.627 4.012 4.033 3.688
A× 101 1.968 2.161 1.888 1.907 2.019 2.014
σ × 103 5.418 5.410 5.555 5.041 5.182 5.250
centeroffset ×102 3.919 3.833 4.291 4.044 4.047 4.075

Table 3.4: The different scattering types’ optimized parameters for our model of IN101’s
illumination function (see Equation 2.8)

3.3 DEHS Scattering

3.3.1 Refractive Index of DEHS

Fitting the inversely proportional function of Equation 2.9 to the literature values
of DEHS’ refractive index yields optimized parameters a = 11.53, b = 1.432. In-
terestingly, this a model reduces the minimized least square error by more than
40%, compared to a linear fit (1.33× 10−6, 2.27× 10−6 respectively). However, the
uncertainty in the refractive index is negligible and given that we only have 5 data
points, we cannot make a clear distinction of what model fits better or provides
clearly better results.
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Figure 3.3: The literature values[5][6] of the refractive index of DEHS (compare Table 2.1)
along with an inversely proportional fit (see Equation 2.9)

3.3.2 Particle Size Distribution

While measuring particles with a median diameter of about 300 nm and 600 nm, the
CPC recorded an average number concentration of 6106.9 cm−3 and 5962.3 cm−3,
respectively. From the SMPS’ measurements, I select three per median diame-
ter that look the cleanest, disregarding others with for example multiple peaks. I
then fit a lognormal distribution, normalized to bin width as discussed in subsec-
tion 1.3.2 and inserting an additional factor for number concentration which results
in the distribution not being normalized anymore, to each size bin’s mean value
for both distributions. The result is plotted in Figure 3.4, yielding a geometric
mean (=median) diameter of 313.5 nm and 594.7 nm and a geometric standard de-
viation of 1.16 and 1.07, respectively. However, the fitted number concentrations
are 7228.0 cm−3 and 7411.0 cm−3, deviating from the CPC’s values that were used
in the calculations in subsection 3.3.3.

Figure 3.4: Scatter plot of mean midpoint diameter distributions for two particle size
ranges, about 300 nm and about 600 nm. Additionally, a (not normalized) lognormal in
spacing dN/d log10 Dp fit is performed on each distribution, as described in Equation 1.65
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3.3.3 Measured and Corrected Scattering Coefficients

In this section we compare the full scattering and hemispherical back scattering co-
efficients for two sizes of DEHS obtained from nephelometers NE300 and IN101 to
the expected values, which are the values corrected according to Equation 1.57. To
obtain the corrected scattering coefficients I use the to the SMPS’s data fitted geo-
metric mean and geometric standard deviation, as well as the number concentration
measured by the CPC, for which I estimate an uncertainty of 10%.

The measured and corrected scattering coefficients are presented in Table 3.5 and
Table 3.6, where the row index is chosen to be applicable to both nephelometers,
despite IN101/NE300 using the same illuminating wavelength 450 nm/450 nm for
blue (B), but differing ones 532 nm/525 nm for green (G) and 632 nm/635 nm for
red (R).

bIN101,meas bIN101, corr bNE300,meas bNE300, corr

full B 829.13 ± 1.27 850.48 ± 85.05 896.07 ± 1.74 800.15 ± 80.02
full G 575.20 ± 0.63 572.41 ± 57.24 665.33 ± 0.92 571.02 ± 57.10
full R 339.93 ± 0.38 337.72 ± 33.77 361.80 ± 0.55 320.85 ± 32.09
back B 60.97 ± 0.06 64.74 ± 6.47 77.08 ± 0.17 58.94 ± 5.89
back G 34.27 ± 0.06 39.45 ± 3.95 50.21 ± 0.12 36.42 ± 3.64
back R 41.07 ± 0.14 41.90 ± 4.19 51.20 ± 0.19 43.80 ± 4.38

Table 3.5: Measured and independent scattering coefficients adjusted for illumination
function effect (i.e. expected scattering coefficients) (Mm−1) of the size distribution with
a geometric mean of 313.5 nm. The expected values of IN101 and NE300 differ due to the
different illuminating wavelengths and illumination functions of the nephelometers.

bIN101,meas bIN101, corr bNE300,meas bNE300, corr

full B 3246.35 ± 3.06 6413.92 ± 641.39 6191.99 ± 25.68 5542.23 ± 554.22
full G 5610.25 ± 8.40 5846.91 ± 584.69 6274.02 ± 28.79 5217.79 ± 521.78
full R 3280.45 ± 2.03 4940.87 ± 494.09 4983.98 ± 22.42 4335.91 ± 433.59
back B 486.72 ± 3.11 430.74 ± 43.07 530.43 ± 2.28 363.73 ± 36.37
back G 394.26 ± 2.45 369.05 ± 36.91 489.56 ± 2.05 324.59 ± 32.46
back R 352.49 ± 2.09 296.30 ± 29.63 361.83 ± 1.44 261.26 ± 26.13

Table 3.6: Measured and and independent scattering coefficients adjusted for illumination
function effect (i.e. expected scattering coefficients) (Mm−1) of the size distribution with
a geometric mean of 594.7 nm. The expected values of IN101 and NE300 differ due to the
different illuminating wavelengths and illumination functions of the nephelometers.

For the particle distribution with a geometric mean of 313.5 nm, the measured
values of IN101 coincide with the corrected values when taking the uncertainties
into account, except for green hemispherical back scattering, which deviates by
1.17Mm−1. All of NE300’s measured values exceed the corrected values, deviating
within 5.5% for full scattering and 20.02% for hemispherical back scattering.

We observe a different pattern for the particle distribution with a geometric mean
of 594.7 nm. For both nephelometers’ full and hemispherical back scattering, only
IN101’s green measured scattering coefficients match their respective expected value.
For hemispherical back scattering, the values at least follow similar tendencies. Af-
ter discussing with my advisors, I believe the IN101 to have been saturated for full
scattering of the size distribution with a geometric mean of 594.7 nm, in other words
the particle concentration being too high. A similar concentration saturating the
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instrument for 600 nm particles, but providing the expected results for 300 nm par-
ticles is conceivable, since it is the scattered light and not the particle concentration
that is decisive, despite of course the latter influencing the former.

Figure 3.5: Measured versus corrected (independent scattering coefficients adjusted for
illumination function effect) full scattering coefficients for both nephelometers. The data
of IN101 of the size distribution with a geometric mean of 594.7 nm has been omitted due
to saturation. The dashed line indicates the position of perfect agreement.

Figure 3.6: Measured versus corrected (independent scattering coefficients adjusted for
illumination function effect) hemispherical back scattering coefficients for both nephelome-
ters. The dashed line indicates the position of perfect agreement.

From the results of Table 3.5 and Table 3.6 (Figure 3.5, Figure 3.6), I present the
calculated the hemispherical back scattering fraction β in Table 3.7 and Table 3.8.
Notice that calculating β according to Equation 1.16 eliminates any influence of
the number concentration, including the CPC’s uncertainty. As this is the only
uncertainty I consider when calculating the corrected scattering coefficients, also
neglecting sizing uncertainty, I report the uncertainty in the corrected β to be
integer zero.
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βIN101,meas βIN101, corr βNE300,meas βNE300, corr

B 0.074 ± 0.000 0.076 ± 0 0.086 ± 0.000 0.074 ± 0
G 0.060 ± 0.000 0.069 ± 0 0.075 ± 0.000 0.064 ± 0
R 0.121 ± 0.000 0.124 ± 0 0.142 ± 0.001 0.137 ± 0

Table 3.7: Measured and expected hemispherical back scattering fraction β for the size
distribution with a geometric mean of 313.5 nm

βIN101,meas βIN101, corr βNE300,meas βNE300, corr

B saturated 0.067 ± 0 0.086 ± 0.001 0.066 ± 0
G saturated 0.063 ± 0 0.078 ± 0.000 0.062 ± 0
R saturated 0.060 ± 0 0.073 ± 0.000 0.060 ± 0

Table 3.8: Measured and expected hemispherical back scattering fraction β for the size
distribution with a geometric mean of 594.7 nm

To assess the nephelometers’ internal consistency, we compare the measured and
expected hemispherical back scattering ratio by dividing the former by the latter.
Furthermore, we also investigate the spectral dependency of full scattering. Similar
to the previous procedure, for both nephelometers and median diameters we cal-
culate the measured and expected ratios of red full scattering divided by blue full
scattering, green full scattering divided by blue full scattering and red full scatter-
ing divided by green full scattering. We then again take the ratio of measured and
expected (i.e. independent scattering coefficients adjusted for illumination function
effect) values.

Figure 3.7: Ratios of measured to independent (i.e. expected, so corrected for illumination
function and calibration: Firstly hemispherical back scattering ratios and secondly spec-
tral ratios of full scattering coefficients. The smaller markers are indicating a geometric
mean size of 313.5 nm, the larger ones a geometric mean size of 797.4 nm. The colors of
the back scattering fractions correspond to the illuminating wavelength of the respective
nephelometer. The x coordinate of a given ratio of full scattering spectral ratios is chosen
as the mean corrected scattering coefficient of the two illuminating wavelengths of the
respective colors.
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Both results are presented in Figure 3.7, but ratios involving IN101’s measurements
of full scattering of the size distribution with a geometric mean of 594.7 nm are
omitted, due to them being saturated. With the exception of red at the size distri-
bution with a geometric mean of 313.5 nm, all ratios of hemispheric back scattering
fractions deviate from unity by more than 10%, the error bars being close to neg-
ligible. This indicates an instrument malfunction, an invalid illumination function,
some other error source that remains to be identified and classified or, despite sanity
checks, an error in the calculations. The team of PSI’s Aerosol Physics and Optics
Group is advised to further look into this. The ratios checking for internal consis-
tency of spectral dependence are all within 8.3% of unity, including error bars. Both
size distributions have a mean ratio within 2.0% of unity, the size distribution with
a geometric mean of 313.5 nm however being less spread out. We can see a clear
pattern of NE300 at both size distributions underestimating the ratios R/B, over-
estimating the ratios G/B and being closest for R/B. IN101 always overestimates
the ratios being closest to unity for R/G.
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Conclusion

The determined calibration coefficients have reasonable uncertainties in the case of
IN101. NE300’s, however, with an average of 6.14%, are on the larger side. In
future work one could approach this differently, for example by incorporating more
intricate formulas and separately accounting for noise such as wall scattering and
dark counts, further increasing the relative signal difference for air and CO2 and
also take more data points.
Regarding the illumination functions, I would invest less time in fitting, because for
the rest of the project I interpolated the measured values of the illumination func-
tion instead of using the fits. However, for NE300, if I were to fit the illumination
function again, I would use a model based on a linear combination of a sinusoidal
curves, as this more accurately represents the physical situation. Regarding the
different measured number concentrations by SMPS and CPC, the CPC is gener-
ally more reliable for number concentrations than the SMPS due to the additional
uncertainty of charging probability. Also, from my advisors’ experience the CPC
provides reliable results for particle concentrations below 10 000 cm−3.
While IN101 was saturated for full scattering at the size distribution with a geo-
metric mean of 594.7 nm, NE300 was never. IN101, at the point it provided data,
was more accurate but generally underestimated scattering coefficients. In contrary,
NE300 consistently overestimated scattering coefficients. For the size distribution
with a smaller geometric mean, IN101 had measured ratios of hemispherical back
scattering fractions closer to the expected value than NE300, which for both size
distributions produced hemispherical back scattering fractions far from the expected
values. I believe the origin of this fact to be the most urgent to investigate in any
future efforts, as also IN101 did not produce results one could generally be satis-
fied with (even at the single size it was not saturated). Both instruments performed
well, significantly better than for hemispherical back scattering fraction, during test
for spectral consistency. All values are within 8.2% of unity, the values being even
more accurate for the size distribution with a geometric mean of 313.5 nm.
The error ranges rarely cover a range for measured and expected values to overlap.
Thus, a more detailed error analysis is needed and must be taken into account
included in further assessments. Overall, for the analysis of the measuring accuracy
of the nephelometers outside the Rayleigh regime, more trials with a larger variety
of size distributions should be conducted. The NE300 seems to be more consistent
at high concentrations and larger particles, but I cannot conclude if any or which of
the two parameters is of prime relevance for nephelometer consistency and accuracy.
It would be especially insightful to repeat all of the above measurements for multiple
median diameters of size distributions and particle concentrations and vary the two
parameters independently. This way, also the dominating influence on limits of
nephelometer consistency and accuracy can be assessed.
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Annalen der Physik, vol. 330, no. 3, pp. 377–445, Jan. 1908.

[8] J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,”
Space Science Reviews, vol. 16, pp. 527–610, 1974, all Rights Reserved.

[9] G. Graf, “Theoretische physik,” Lecture Notes, ETH Zurich, 2015, https://
edu.itp.phys.ethz.ch/15FS/tp/tp.pdf.

[10] H. Horvath, M. Kasahara, S. Tohno, F. Olmo, H. Lyamani, L. Alados-
Arboledas, A. Quirantes, and V. Cachorro, “Relationship between fraction of
backscattered light and asymmetry parameter,” Journal of Aerosol Science,
vol. 91, pp. 43–53, 2016.

[11] D. H. Staelin, “Boundary conditions for electromagnetic fields,” jun 16 2022,
accessed May 15, 2024.

[12] S. Prahl, “miepython,” https://miepython.readthedocs.io/en/latest/index.
html, 2017–2024, accessed May 14, 2024.

[13] J. I. Dong Kyu Lee and S. Lee, “Standard deviation and standard error of the
mean,” Korean Journal of Anesthesiology, vol. 68, no. 3, pp. 220–223, Jun.
2015, published online 2015 May 28.

30

https://commons.wikimedia.org/w/index.php?title=File:Linear_Polarization_Linearly_Polarized_Light_plane_wave.svg&oldid=513693092
https://commons.wikimedia.org/w/index.php?title=File:Linear_Polarization_Linearly_Polarized_Light_plane_wave.svg&oldid=513693092
www.deha-gmbh.de
www.topas-gmbh.de
https://edu.itp.phys.ethz.ch/15FS/tp/tp.pdf
https://edu.itp.phys.ethz.ch/15FS/tp/tp.pdf
https://miepython.readthedocs.io/en/latest/index.html
https://miepython.readthedocs.io/en/latest/index.html


31 Bibliography

[14] E. O. Lebigot, “Uncertainties: a python package for calculations with uncer-
tainties,” http://pythonhosted.org/uncertainties/, website accessed May 20,
2024.

[15] T. L. Anderson and J. A. Ogren, “Determining aerosol radiative properties
using the tsi 3563 integrating nephelometer,” Aerosol Science and Technology,
vol. 29, no. 1, pp. 57–69, 1998.

[16] T. Anderson, D. Covert, S. Marshall, M. Laucks, R. Charlson, A. Waggoner,
J. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler,
N. Ahlquist, and T. Bates, “Performance characteristics of a high-sensitivity,
three-wavelength, total scatter/backscatter nephelometer,” Journal of
Atmospheric and Oceanic Technology, vol. 13, no. 5, pp. 967 – 986, 1996.

[17] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments - A How-
to Approach, 2nd ed. Springer-Verlag Berlin Heidelberg GmbH, 1994, iSBN
978-3-540-57280-0.

[18] S. Selvin, The Log-Normal Distribution. Cambridge University Press, 2015,
p. 278–286.

[19] “Aerosol statistics: Lognormal distributions and dn/dlogdp,” U.S.A, 2012,
http://www.tsi.com, accessed: May 13, 2024.

[20] O. G. Raabe, “Particle size analysis utilizing grouped data and the log-normal
distribution,” Journal of Aerosol Science, vol. 2, no. 3, pp. 289–303, 1971.

[21] M. R. O. Panão, “Why drop size distributions in sprays fit the lognormal,”
Physics of Fluids, vol. 35, no. 1, p. 011701, 01 2023.

[22] Air Photon, “Airphoton 3-wavelength integrating nephelometers
datasheet,” https://www.airphoton.com/uploads/7/6/0/6/76064899/
airphoton nepehlometers.pdf , accessed May 6, 2024.

[23] A. Moallemi, “Theoretical assessment, laboratory development, and field appli-
cation of in situ aerosol characterization techniques based on ultra violet light
induced fluorescence and multi-angle aerosol polarimetry,” Doctoral Thesis,
ETH Zurich, Zurich, 2022.

[24] G. Dolgos and J. V. Martins, “Polarized imaging nephelometer for in situ
airborne measurements of aerosol light scattering,” Optics Express, vol. 22,
no. 18, pp. 21 972–21 990, 2014.

[25] J.-L. Meyzonnette, J. Mangin, and M. Cathelinaud, Refractive Index of
Optical Materials, ser. Springer Handbooks. Springer, 2019, pp. 997–1045,
available from HAL: hal-02405126.

[26] D. W. Cooper and P. C. Reist, “Neutralizing charged aerosols with radioactive
sources,” Journal of Colloid and Interface Science, vol. 45, no. 1, pp. 17–26,
Oct. 1973.

[27] W. A. Hoppel and G. M. Frick, “Aerosol charge distributions produced
by radioactive ionizers,” Naval Research Laboratory, Washington, DC
20375-5000, NRL Laboratory Report NRL Report 9108, May 1988, accessed
May 13, 2024.

[28] Cambustion, “What is aerodynamic diameter?” https://www.cambustion.
com/knowledgebase/what-is-aerodynamic-diameter, accessed May 13, 2024.

http://pythonhosted.org/uncertainties/
http://www.tsi.com
https://www.airphoton.com/uploads/7/6/0/6/76064899/airphoton_nepehlometers.pdf
https://www.airphoton.com/uploads/7/6/0/6/76064899/airphoton_nepehlometers.pdf
https://www.cambustion.com/knowledgebase/what-is-aerodynamic-diameter
https://www.cambustion.com/knowledgebase/what-is-aerodynamic-diameter


Bibliography 32



Appendix A

Figures

A.1 Illumination Functions

A.1.1 Illumination Functions of NE300

Figure A.1: NE300’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 450 nm

33



Appendix A. Figures 34

Figure A.2: NE300’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 525 nm

Figure A.3: NE300’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 635 nm
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A.1.2 Illumination Functions of IN101

Figure A.4: IN101’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 450 nm

Figure A.5: IN101’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 532 nm
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Figure A.6: IN101’s full and hemispherical back scattering illumination function for an
illuminating wavelength of 632 nm
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